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ROBUST ESTIMATES OF ORDERED PARAMETERS(l)

Rhonda Magel(z) and F. T. Wright
University of Texas-San Antonio and University of Missouri-Rolla

Key Words: Order restricted inference, Robust estimation,
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ABSTRACT

-

“ 1

WE‘consider the estimation of a collection of location
parameters when it 1s believed, a priori, that their ordering
is known. The least squares and léast absolute deviations
estimates subject to this ordering restriction have been
studied in the literature. We seek robust estimators which
pertorm well for a broad range of distributions. The results
of a Monte Carlo study and a study of computation algorithms

are discussed.

(l)This research was sponsored by the Office of Naval Research
under ONR contract N00014-80-C-0322.

(Z)Parts of this work are taken from this author's doctoral
dissertation written at the University of Missouri-Rolla.
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1. INTRODUCTION AND SUMMARY. We consider the estimation of

k location parameters when it is believed that they arc

nondecreasing. Let 6, <8, < ... <8 denote the parameters

and suppose that independent random samples, Xii’ j=l,2,...,

n,, i=1,2,...,k, are available. Brunk (1955) obtained the

maximum likelihood estimates of nondecreasing normal means,

which, of course, minimize

k oMy 2 : ,
zi=1zj=l(xij 6.) subject to 6, < 6, < ... < 8.
There are several algorithms for computing these estimates,
but we emphasize the pool adjacent violators algorithm (PAVA}).

(For a detailed discussion of such algorithms, sce Scction 2.3

of Barlow et al. (1972).) If the sample means, Xi’ are

nondecreasing, then they are the restricted least squares
estimates., If not there is a violation, that is Xi ji+1

for some i, then the corresponding samples are pooled and the
two sample means are replaced by the mean of the pooled

sample. Next the resulting k-1 sample means are considered
with the understanding that once two samples are pooled thev
must remain together. This process is continued until a
nondecreasing set of means is obtained. If the ith sample

has not been pooled with another, then the estimates of ei

is Yi’ but if the ith sample has been pooled, then the cstimate
is the mean of the final pooled sample containing the ith

sample.

As would be expected, thesec restricted lcast squarcs

estimates are unduly affected by extreme observations and so




robust estimators would be desirable in many situations.
Robertson and Waltman (1968) derived the least absolute ,

deviations estimates, in particular they obtained the

values which minimize

koM . . .
Zi=12j=llxij 0,1 subject to 6, < 0, < ... < b .

They also showed that if one uses the sample medians as the

initial estimates (in place of Yi) and computes the median
of the pooled samples rather than the mean, then the PAVA
can be used to compute these estimates also. It is well-
known that the sample median is not very efficient for a
normal model, but this does suggest an apprcach for obtaining
robust estimates of the ei. Using the notation from Huber
(1981), 1let T be a location statistic, such as the mean,
median or an M-estimate, which may be thought of as a
functional defined for all empirical distribution functions
(EDFs). One could obtain nondecreasing estimates of the Gy
by employing the PAVA and using T to obtain initial estimates
as well as the estimates from pooled samples. We denote
such estimates by 51 <8, <. < §k. (While these estimates
depend on T, we do not indicate this in the notation.)
Robertson and Wright (1980) considered computation ‘
algorithms for order restricted estimates and found that it
is desirable for the estimator, T, to have the Cauchy mean i
value property (CMVP). T has the CMVP provided its value
for a pooled sample is between the T values for the two samples.
That is, if F and kE, are EDFs based on samples of size n and "

m respectively, then




TEDAT(F) < T +mF )/ (nem)) < T(F IVT(E ).

An estimator with this property will be called a Cauchy

mean (CM). 1f T is a CM, then the PAVA yields the same
estinate independent of the order in which violators arc
pooled and these estimates agree with thosc obtained from
the max-min formulas which are discussed there. Robertson
and Wright (1974) have shown that if T is a consistent CM,

then the estimates obtained from the PAVA also are provided

n, > e for each 1i.

In Section 2, several classes of robust estimators arc
studied to determine if they are CMs. Since so few of those
considered in the literature are, the use of non-CMs i1s
discussed further. Section 3 describes the results of a
Monte Carlo study of robust estimators for ordered location
parameters. If one wants estimators that perform well over
the range of normal to Cauchy errors, then Gastwirth's
estimator or the trimmed mean which trims 25% on cach side
are recommended. The trimmed mean is a little more efficient
for the normal model and Gastwirth's estimator is more
efficient for the Cauchy. The latter is also easier to computec,
If very heavy tailed distributions are not a concern, wc
recommend the Huber with ¢ = 1.5 (¢ is defined in Scction 2)

which has the advantages of the CMg.

—

2. ROBUST CMs AND COMPUTATION ALGORITIMS. In this wcction,

we consider the types of location estimators discussced in

Andrews ¢t al. (1972) to determine which of those would be
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appropriate for computing order restricted estimates.

An M-estimate is a solution, Tn = T(Fn), to an equation

of the form

P59y -T/s) = 0, (1)

where ¢ is an odd function and s is estimated independcntly,
(One can also estimate s simultaneously, but, as we shall
see, this may yield an estimator which does not have the
CMVP.) Hampel and Andrews have proposed somec redescending

v functions (cf. Andrews et al. (1972)), but Hogg (1979)
points out that the M-estimates corresponding to thesc

¢y functions, as well as Tukey's biweight, may possess
convergence problems when solving iteratively. Since such
an iterative procedure must be implemented several times when
computing order restricted estimates, thesc ¥ functions were
not considered further. Huber (1964) proposed

p(x) = x for |x| < c and ¥(x) = ¢ sgn(x) for |x| - ¢, (2)

with ¢ a fixed positive constant. A common choice for s is

median(lxi-median(xi)|)/.6754,

however, it is not difficult to construct examples to show
that if s is computed this way, varying with the sample,
then the resulting estimator need not be a CM. (An cxample
is given in Magel (1982).) In many situations, the k
populations are assumed to differ only in location and so

one could use a fixed value of s, namely,

s = median(|x,.-median(x. .:
ij ij

j=l,2,...,ni)|: 1=1,2,...,k)/.0754.
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It is easy to show that the solution set for this ¢ must be
a nonempty, closed interval (possibly one point) and so we
define the estimator to be the midpoint.

Remark. Huber's M-estimator (¢ given by (2)) with a fixed s
is a CM.

Proof. Without loss of generality we assume s = 1. Let

Tn = T(Fn), Tm = T(Fm) and rn+m = ](Fn+m)’ where Fn and
Fm are the EDFs corresponding to two samples and Fn+m =
(nFn + mFm)/(n+m). Let the solution set for Tn be [al’hll’
for Tm be [aZ’bZ] and for Tn+m be [aS’bS]' We also assume
that the samples have been labeled so that a; < a,. Now
the left hand side (1lhs) of (1) can be written as

[
an(x-Tn)an(x) and we see that
Joietrar aafsnar,00 < fbeenar, o0

(3)

< Jw(x-t)an(x)va(x—t)dFm(x).

Setting t = az-€, € > 0, the middle term of (3) is positive

and so one of the expressions in the rhs of (3) must be

positive. Because a; < a, this implies that az - € < a,.
<

Letting € +~ 0, yields a a,. Setting t = a, in the middle

3 2 3

term implies that one of the terms in the lhs is nonpositive

or a; > a So if T were chosen to be the 1h endpoint it

1
would have the CMVP. By symmetry considerations, the same

can be shown for the rh endpoints. If b1 < h3 < hz, then

(a;*b;)/2 < (a3+b3)/2 < (a2+b2)/2. If b, < by« b . then

[az,bzl C:[al’bl]’ in which case IaS’bSJ = Iaz,hzj, because

O

i
'
|
i




(n+m)fw(x—t)an+m(x)=an(x-t)an(x)+mjw(x-t)dFm(x)= ( “Zit:hz

This remark applies when s is fixed, but in the above
definition of Huber's estimate s may vary with the k samples.
However, for a fixed set of variables Xij’ s has a fixed
value and if that value is used to compute the Gi’ then the
order in which violators are pooled will not affect o,
the max-min formulaes will give the same 6i’ and the norm
reducing property of Robertson and Wright (1974) will imply
that |

6.

max .
i

1<i<kl 937031 < ’“"‘xliiik”ni‘
So if the error distribution, ie. the distribution of

X;;-8;, is symmetric about zero, then 51 > 6 for cach i

ij’
provided n, > for each i.

Another large class of location estimators arc the linear
combinations of order statistics, or L-estimators. This
class includes trimmed means, adaptive trimmed mecans,
Gastwirth's estimator and Tukey's Trimean, as well as the
mean and median. Leurgans (1981) has shown that there arc
only three basic types of L-estimators which possess the (MVP:
the mean; weighted midranges, that is a weighted average of
the smallest and largest order statistics, WX (1 + (1-w)x

(n)

where X < X <. .. <X are the order statistics from
(1) = 7(2) - (n)

a sample of size n and 0 < w < 1; and weighted percentiles,

x([np]+l) if np is not an integer, and wx(np) + (l-w)x(np+1)
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if np is an integer. Hence, the commonly used robust L-cstimators
are not CMs. Hogg (1967) proposed an adaptive estimator which

uses various L-estimators depending on the value of the

sample kurtosis. Two of these, the trimmed mean and the outer
mean are not CMs.

Estimators derived from rank tests for a shift arc called
R-estimators. The lodges-Lehmann estimator, a popular menber
of this class, is defined to be the median of pairwise averages,
med((xi+xj)/2). Magel (1982) gives an example which shows
that this estimator does not posscss the CMUVP and the samc
example shows that this is true if one considers all n2 pairs,
just those with 1 < j, or just those with i < j. The folded
medians comprise a closely relatcd class of estimators which
depend on the averages of symmetrically placed order statistics,
ie. (x(1)+x(n))/2, (x(2)+x(n»l))/2’ ctc.  The Bickel-tHodges
estimator, the median of thesc numbers, does not have the CMUP
(Magel (1982)). It is also shown there that the multiply
folded medians (cf. Andrews et al. (1972) for a description)
are not CMs.

Magel (1982) has also shown that the skipped means and
the one step Hubers do not possess the CMVP. (Andrews ct al.
(1972) also discuss these estimators.) '

Since so few robust estimators of location have the CMVP,
we consider algorithms that do not require this property,
Leurgans (1982) considered a SLOCOM algorithm with lincar

functions of order statistics, but noted that the resulting

estimators need not be nondecreasing. Robertson and Wright




{1974, Lxample 5) considercd the estimation of ordered modes and

observed that the max-min formula applied to consistent
estimators which are not CMs may produce estimator which arc
not consistent. That example also shows that the lower

sets algorithm (cf. Barlow et al. (1972)) has this same
difficulty. The problem stems from the fact that, with
estimators that are not CMs, the initial estimates mav hc
nondecreasing, but yet these algorithms may modity them
substantially. This does not happen with the PAVA. 1In
fact, it is clear that if ¢ 6 < 62 < L., f i{ the

1 k’®

estimator T is consistent and if min n. - m,thcnfw

I<i<k i
is consistent for ei for i=1,2,...,k. So we recommend

the PAVA when computing order restricted estimates bhasced

on initial estimators which are not CMs. However, there is
one difficulty with this approach. The estimates may

depend on the order in which violators are pooled. In

the Monte Carlo study that was conducted, pooling was

always from left to right, starting with the first violators,
Xi > N

(n Xy + ny g X,)/(ng +om

the ith and i+lst samples are pooled, then
i+1) is compared with ii+2’ cte.

3. MONTE CARLO RESULTS. Since the small samplce propertics

of order restricted estimators have proved to be quite
intractable, even in the case of normal mcans, a Montce
Carlo study was conducted to assess the performance of such

estimators for various choices of T. As was mentioned in

the last section, even for moderate values of k, scveral
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values of T must be computed wher cmploying the PAVA and so we

have not considered some c¢stimators becausc of computational

complexities. We have studied the following 1: the mean;
median; Tukey's trimean; Gastwirth's estimator (ilasti;

Bl

symmetrically trimmed means, trimming 15% and 257 on cach

side (Trim 15, Trim 25); and Huber's M-estimator with

¢ = 1.5 and 2.0 (I1-1.5, H-2.0). We have assumed that the
xii - ei arece iid with the distributions studiced in Andrews
et al. (1972). A key to the distributions used is given in

Table I. Many of these distributions are mixtures and
N(0,1)/U(0,1) represents the distribution of the ratio of
independent variables, one a standard normal and the other
a uniform variable on (0,1). For k = 2,3,5 and various

choices of 0, <8, < ... < ek; P R P L 10

1
or 20; cach distribution in Table [; and each T given above,

2

the mean square error (MSL) assoclated with cestimating Y

— 2
ie. E(Oi—ei)“, was estimated based on 5000 iterations. The

— 2
total MSE, §?=1E(91-8,)“, was estimated by summing thesce k

values and with k,6, < 6, < ... < 6,, and an error distri-

1
bution fixed, an estimated relative efficiency for a particular

T was computed by taking the reciprocal of the ratio of its
total MSE to the smallest total MSE for all T in the study.
These estimated relative efficiencies are given in Tables
IT through V.

In Tables II and IV, with k and n fixed, the dispersions

in the © vector, 6k - 81’ are varied. llowever it is interesting




to note that there are no unusual changes in the cfficlencices.
This would lead us to believe that the conclusions that

follow are valid for a reasonable range of dispersions in ‘.
(Since the estimators, T, considered are location statistics,
the 51 © Uy have distributions that arce invariant undco

shifts by a constant vector.)

First, we consider the estimators in groups., The median,
trimean and Gast are casily computed L-statistics. fast
dominates the median for all but the very heavy tailed
distributions (11 and in some cases 7). However, the loss
in efficiency is at most 10 percentage points in all the
cases considered and the gain is as much as 24 percentage
points in some light tailed cases. The trimean is c¢n the
other extreme, performing cven better for light tailced
distributions (a gain of 5 percentage points or so in
efficiency), but considerably worse [for hecavy tailed distii
butions, with a loss of approximately 20 percentage points.
In this group we recommend Castwirth's estimator unless the
user is quite certain that very heavy tailed errors are not
present, then the trimean could bhe used.

Andrews et al. (1972) suggest that Hubers, with ¢ in the
range we have considered, might be used in practical
situations. (They consider the Cauchy distribution to he
unreasonable.) In the casces considered here, the cofliciency
of H-2.0 for a normal model was about 3% more than H-1.5,
but that is reversed in even the lightest contamination

considered and there is as much as 10 percentage points




difference for moderate tailed errors. So we rcecommend 1.5

tn this family. If very heavy tailed distributions (7,111 cun ;
be ruled out, an experimenter may prefer H-1.5 over the

other T in this study. It holds it cfficiency in the normal

model, performs well for all but the very heavy tailed
distributions and has the advantages ol a CM,

Among the trimmed means we recommend a trimming
proportion around 25% on each side. The Trim 15 huas
percentage points more efficiency for the normal modcel,
but the losses for moderate and heavy tailed distribution

(3-06 and 8-10) can be far greater.

<

It one wants an estimator that performs well over the

range of situations considered here, then the Trim 25 and
the Gust should be considered. The cfficiency of the Gax
for a normal model is about 4 percentage points smallcer,
but is up to 7 percentage points larger for the Cauchy
distribution (cf. k=5). Gastwirth's estimator 1s casicr
to compute., If onc feels it is not necessary to guard
against very hecavy tailed distributions (7,11), then
H-1.5 is recommended. It is ahout 95% cfficient in the
normal case and has the advantage of a CM.

While it is not possible to consider ecnough k and
to draw definitive conclusions, the fact thatr the
recommendations given above arc supported by cach casce
considered strengthens their credibility,  Also (or cach

and 0 considered, the Monte Carvlo experiment was carriced

out for n = 10 and 20,and for k = 5 additional ¢, such

t

3
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as (0,0,0,0,1) and (2,4,8,10,32), were considered. Lach

case substantiated the recommendations above.
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TABLE I. KEY TO THE ERROR DISTRIBUTION USED

1. N(0,1)

2. 90% N(0,1) and 10% N(0,9)
3. Double Exponential

4, 50% N(0,1) and 50% N(0,9)

5. 25% N(0,1) and 75% N(0,9)

v

6. 90% N(0,1) and 10% N(0,100)

7. 75% N(0,1) and 25% N(0,100)

\C

8. 90% N(0,1) and 109 N(0,1)/U(u,1)

I\

9. 75% N(0,1) and 25% N(0,1)/U(0,1)
10. 903 N(0,1) and 10% X(0,1)/U(0,%)

11. Cauchy

R et DR




TABLE II: RELATIVE EFFICIENCIES: k=2, n=20

6 = (0,0)

Iistribution Mean Median Trimean Gast H-1.5 H-2.0 Trim 15 lrm 2o
1 1.000 L0675 .865 .819 . 959 . 987 LOl6 .845
2 . 730 .747 . 944 L899 1.000 L9969 LO80 L05]
3 .503 .639 .954 .883 . 953 .825 1,000 L0225
4 .642 .914 .928 . 886 . 856 .773 .901 1.000
5 .871 . 937 .955 .987 .929 . 904 L0948 1,000
6 . 136 .827 .996 .979 .984 .882 L4984 1.000
7 .100 .968 .724 1.000 .763 .584 .560 L9813
8 <.1 770 .950 .906 1.000 .973 .988 LU38
9 <.1 .828 .987 .965 .982 .900 1.000 L9491

10 <.1 .808 .987 . 955 .991 .904 1.000 L9841
11 <.1 1.000 L6906 .904 .647 .525 L5911 L8492

6 = (-.3,.3)

1 1.000 .703 .882 .838 . 960 .988 L0206 L850
2 .751 .769 .953  .914 1.000 L9971 .991 LO3
3 .528 .683 .964 .927 .967 . 860 1,000 L0573
4 .671 .931 .936 .987 .871 .795 .909 1.000
5 .884 .948 .963 .989 .936 .914 .954 1. 000
6 158 .845 .988 .982 .977 .882 .97 7 1.000
7 .116 .982 .744 1.000 . 785 .614 .589 .82
8 <.1 .782 .951 .914 1.000 .974 .988 .930
9 <.1 .845 .991 .970  .987 .911 1.000 L9000
10 <.1 .839 .993  .971 .994 .918  1.000 .00
11 <.1 1.000 .715 .901 .673  .5506 L6015 L8890




TABLE 1I1T: RELATIVE EFFICIENCIES: k=3, 8=(0,0,1)

n = 10

Distribution Mecan Median Trimean Gast H-1.5 H-2.0 Trim 15 drim 27

1 1.000 .729 .892 .833 954 . 081 LY39 8T
2 .762 .810 .955 .921 1.000 .978 . 985 L899
3 .539 .800 .974 62 1,000 .890 .941 .970
1 L7223 . 954 L945 1.000 L9117 .851 L.920 L9402
5 .893 L9432 .958 . 985 . 949 .928 L9755 1.000
O 173 .893 .931 .984 1.000 L978 L8090 .81
7 128 1.000 .576 915 L7607 L0100 L4506 Lol
8 <. 1 .811 L9506 L0120 1,000 .980 L0587 L9358
9 \ .883 .08 L9700 1.000 LU35 L8412 .0a”
to <ol .871 .95 L9668  1.000 L4930 L84a44 LT
11 <1 1.o000 L038 L9004 713 . 507 L1253 .825
n = 20
1 1.000 .682 .875 .820 Lvo0l 991 L9532 L8000
2 .73 .761 L9449 L9100 1,000 LOT 991 U358
3 .511 . 007 L0978 .914 L997 . 858 1.0a0 L9354
) .067 .914 .923 .982 .803 .87 .904 1.000
5 . 837 .919 .923 . 949 . 894 . 868 L9950 1.0u00
0 .163 . 841 .992 L978 1.000 .04 . 984 L0a7
7 121 .961 772 1.000 . 806 .633 . 585 .03
8 <.1 .760 . 944 .895 1.000 . 981 L0962 L9153
9 <.1 .783 .929 . 906 L9309 .870 1.000 . U88
10 <1 . 808 974 L9900 1,000 .27 L9906 LTS
11 S | ]1.000 .724 L9119 .087 L5872 Lol7 . 880




TABLE IV: RELATIVE EFFICIENCIES, k=3, n=20 ¥

6 = (-2,0,2)

Distribution Mean Median Trimecan Cast H-1.5 H-2.0 Jdrim I5 Trim 2)

1 1.000  .681  .873  .824  .962  .990  .928 L858
2 734 762 L9501  .913 1.000  .970 .99l L9349

3 513 .081  .979  .932 1.000  .865  .987 L940

1 647 L0905 .909  .965  .850  .772  .899  1.000

5 .855  .934  .950  .971  .915  .§88  .952  1.000

o J147 U845 .984  .981  .993  .895 963  1.000

. 1o .989  .706 1.000  .807  .622  .520 L9057

$ <.l .759  .943  .899 1.000  .982 .97 922

9 <.1  .804  .954  .920  .963  .891  1.000 901
10 <. 1 (818 98D L9509 1.000  .u24 . 986 978 §
11 <.l 1000 .694  .903  .680  .500  .590 L8858 |

6 = (-.33,-.09,.33) §

1 1.000 .714 .885  .840  .963 .88 L9037 .87 Y
2 .762 .785 .955  .919 1.000 .974 991 .044
3 .555 .699 .980  .932 1.000  .875  1.000 941 j
4 677 .926 .932  .989  .871  .796 .908 1.000 5
5 . 825 911 .913  .943  .883  .856 .948 1.000
6 171 .858  .995 984 1.000 .913 .98l 987 ?
7 .118 .963 .795 1.000  .815  .646 602 970
8 <.1 .785 .950 .908 1.000 .927 . 955 912 ‘
9 <.1 .808 .944  .922  .953  .889  1.000 . 989 |
10 <.1 .834 .983  .967 1.000  .933  1.000 090
11 <.l 1.000 .728  .923  .688  .574 L015 L8760




TABLE V: RELATIVE EFFICIENCIES, k=5, n=10

8 = (-.8,-.3,0,.9,1.5) g

Distribution Mean Median Trimean Gast H-1.5 H-2.0 Trim 15 Trim 25

1 1.000 .757 .903  .849  .962  .985 . 949 . 884
2 .782 .828 .958  .924 1.000  .982 .087 U549
3 .512 .668 .979 L9106 [.000 .801 .954 L9890 ,
1 725 L9062 L936 .991 .91l L8406 025 L. 000 f
5 .884 .945 L051 L9730 L0938 9]0 L071 L.00n
0 .197 .901 L9510 .978  1.000 L9206 831 L075
7 .145  1.000 .645  .945 823  .672 500 .854
8 <.1 .826 .957  .921 1.000  .988 . 901 040
9 <.1 .888 .967 .971 .987 .929 L9920 1.000
10 <.1 .878 .948  .961 1.000  .945 . 880 087
11 <.1 1.000 .724  .919 687  .572 430 836
6 = (-2.2,-.7,0,0,.7)

1 1.000 .742 .896  .839  .958  .985 938 .875
2 .776 . 826 .955  .925 1.000  .983 L 982 .953
3 .543 .796 .954  .938 1.000  .891 L910 .94
4 723 .9509 .935  .990  .912  .840 .021 1,000
S .889 .947 .950 .980 .942 L921 LU75 1.000
6 .192 .888 .942  .973 1.000  .924 .801 058
7 .147  1.000 .630 .936  .823  ,670 .500 846
8 <. 1 .820 .955  .917 1.000  .989 .957 943
9 <.1 .878 .957  .960  .978  .920 .912 1.000
10 <.1 .871 .943  .958 1.000 .941 857 969
11 <.l 1.000 L642  .912 .743 632 431 .834







